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Bayes Prediction Density and Regression Estimation -
A Semiparametric Approach

By R. C. Tiwari!, S. R. Jammalamadaka? and S. Chib3

Abstract: This paper is concerned with the Bayes estimation of an arbitrary multivariate density,
fx),xe RE. Such an f(x) may be represented as a mixture of a given parametric family of densi-
ties {#(x16)} with support in R¥, where ¢ tin R?) is chosen according to a mixing distribution G.
We consider the semiparametric Bayes approach in which G, in turn, is chosen according to a
Dirichlet process prior with given parameter «. We then specialize these results when f is expressed
as a mixture of multivariate normal densities ¢(x|u, A) where u is the mean vector and A is the
precision matrix. The results are finally applied to estimating a regression parameter.

1 Introduction

In a recent paper, Ferguson (1983) presents a nonparametric Bayes procedure for
estimating an arbitrary density f(x) on the real line. This paper extends the results of
Ferguson to the multivariate casé and considers the estimation of the predictive density
as well as the regression parameter. Consider a k¥ x 1 random vector X = (Y, X,, ..., Xg)'
where, in the regression context, ¥ may be regarded as the dependent variable and
(X5, ..., Xx) as the set of independent variables. We assume that X has an unknown
density f(x), x €ER¥. Such an f(x) may be represented as a mixture of a multivariate
normal densities {¢(x|u, A)},ie.,

Fx)= [ ¢Cxlu, A)dGlu, A), M)

where u, the mean vector and A, the precision (or the inverse of the variance) matrix
of the normal density, are chosen according to a mixing distribution G. Note that any
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distribution on R* can be approximated by such a mixture to any preassigned accuracy
in the Levy metric, and any density on R¥ can be approximated similarly in the L,
norm (cf. Ferguson 1983).

We consider the semiparametric Bayes approach, in which the unknown mixing
distribution G, is chosen according to a Dirichlet prior with parameter a, say D(a). Our
objective is to find the Bayes estimate £ (x), of the density of a future observation
X,+1 given a random sample Xy, ..., x, from f(x); that is, to find the semiparametric
Bayes prediction density

fn(x)':E[f(x)ixl’-"sxn]’ (2)

where, in view of representation (1), the expectation in (2) is with respect to the
posterior distribution of G given the sample (x1, .., xn) which is a mixture of Dirichlet

processes (see, equation (11)).
We also consider the problem of finding the Bayes estimate of the parameter §
that minimizes the mean-squared prediction error

k 2
E|Yype1— _22 BiXin+1 3)
i=

overall 8= (85, ..., Bk) € R¥~1 Note that (3) is minimized when § is

p*=D"la, “)
where

Dk —1yxk—1) = (@) = (EXi 41 Xjn+1)))
and

a(k_l)xl = (dz, ...,ak), with a; =E(Xi,rl+1 Yn+1).

As stated in Poli (1985) (see also Tiwari, Chib and Jammalamadaka 1988), ““the
achieved estimate p* provides the best linear prediction of Y, in terms of (X3 n+1,

--~,Xk,n+1)”-
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This paper is organized as follows. Section 2 contains preliminaries and some
general results which are then specialized to the case of normal mixtures in Section 3.
Section 4 contains the Bayes estimate of §*, while the last section includes some com-
ments on the computational aspects.

2 Preliminaries and General Results

This section provides the basic definitions and results that will be used in the sequel.
Let X be a k x 1 random vector. Then X has a k-variate normal distribution with mean
vector u and precision (the inverse of variance) matrix A, denoted by X ~ N, (u, A), if
its pdf is given by

oI, A) = ) FI2 A1V exp {—(1/2)(x — 1) Alx — w)}, ()

where u € R¥ and A is a symmetric positive definite (s.p.d.) matrix of order £.
A k x k random matrix A has a Wishart distribution if its pdf is given by

FNA* p)=c - [A* [T IA =KD - exp {H(1/2) tr (AA*1)}, (6)

where A* is a scale matrix of order k, v >k is the degrees of freedom, and c is the
normalizing constant given by

K
¢l = 2k¥2 gk (=1/4 3 Dy + 1 —j)2).
j=1

We shall use the notation A ~ Wi(A*,v)to denote that A has the pdf given by (6).
The & x 1 vector X has a multivariate Student’s ¢-distribution if its density func-
tion is given by

(v +k)/2)

-
fCxlu, A, v) = (vm) ro/2)

AR v e - ) AGe = )] T2 (7)

where u €R¥, » >0 is the degrees of freedom and A is a s.p.d. matrix of order k. We
use the notation X ~ MVt (u, A, v) to denote that X has the pdf given by (7).
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Let o) be a finite non-null finitely additive measure on (R?,RY). A random
probability measure P on (R, R%) is a Dirichlet process with parameter a, and write
P e D(w), if for every finite s and every measurable partition Ay, ..., A of R the
random variables (P(4y, ..., P(Ag)) have the Dirichlet distribution with parameters
(a(dy), ..., a(4,)) (cf. Ferguson 1973).

Let 84 represent the degenerate probability measure at a single point . Let G be
the distribution function associated with the random probability measure P. Then,
under D(a), G can expressed as (cf. Sethuraman and Tiwari 1982):

G= X p;be,, (®)

where
(i) 04,0,, ..., areiid on (R?, R?) with the common distribution Go = a(*)/M,
(i) (py,py,..)and (84, 0,, ...) are independent,
(iii) ¢1 =p1,42 =P2/(1 =P1),q3 =p3/(1 =Py —D3), ... are iid Beta (1, M), M = o(R?),

More generally than (1), one may assume that the unknown density y(x) is expressed
as a mixture of a family of k-variate densities {A(x|6)}, with the mixing distribution
G (on0)inR%ie.,

Y(x) = [ h(x|6)dG(6). ©)
If this mixing distribution G, is assumed to have a Dirichlet prior, then from (8)

V@)= 2 piGals)). (10)

Let xq,...,x, be a random sample from y(x) given by (9). This is equivalent to first
choosing 64, ...,0, iid. from G4(6), and then x; from A(x|0;),i =1, ..., n indepen-
dently. Then the posterior distribution of G given x4, ..., x, is 2 mixture of Dirichlet
processes (cf. Antoniak 1974)

G|x1, Xy S fD

n
at = Sgi)dH(Hl,...,Gnlxl,...,xn), (1)
i=1
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where dH(0,, ...,0p,lxy, ..., Xy), the posterior density of 64, ..., 0, given Xy, ..., Xy,
1s

n n i-1
dH(Bl,...,Gnixl,...,x,,)a( I1 h(x,l@,)) 11 d(Ol‘l‘ z 69})(0,)/]‘4(")
i=1 i=1 j=1
with the notation M = MM +1) ... (M +n —1). From (11) we have

M n 2
E(G(e)lxls '-'7xn) =A4—+VI_G0(0) +mf6n(6)dH(615 --"enlxl; --->xn)
12)

n
where G,(-)= . z 8¢, is the empirical measure of the observed 04, ...,0, and G,
i=1

corresponds to the normalized a-measure. Consequently we have the following:

Theorem 1: The Bayes estimator of (x) under squared error loss function, ¥,(x) =
E[Yy(x)Ixq,...,x,],1s given by

M n

() o () (13)

Ynlx)=

where ¢ (x), the estimate of (x) for no sample size, is given by
Yo(¥) = EY(x) = [ h(x]0)dGo(6) (14)
and

-

1 n
V)=~ E:l [ fhx(0)dH@O 1, ..., 01X, s X)) (15)

The nonparametric Bayes estimate of y(x) is, therefore, seen to be a weighted average
of the prior guess Yo (x) given in (14), and J/,,(x) given in (15). Two special cases of
interest as M, the strength in the prior goes to zero and infinity, may be considered as
in Ferguson (1983).
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In particular, as M — oo, the 6;’s are all distinct and the prediction density is given
by

1 n
YHx) = ;El Wlxlx;), 16)

where

T hix|0Yh(x,10)dGo (0)
S h(x;10)dGy(6)

Yrley) =

is the Bayes prediction density of x given the one observation Xi.

3 Results for Normal Mixtures

In this section we specialize the results of the previous section by letting 6 = (u, A)
and h(x|0) be a multivariate normal density with mean 1 and the precision matrix A.
We also let G be the joint prior distribution of (u, A) given by

UIA~N(u*, Ab%),  b* >0 a7)

and

A~ Wi (A*, v¥). (18)

Now, let the unknown density f(x), be a random mixture of a multivariate normal
densities as in (1)1i.e.,

F&x)=J ¢xlu, A)dG(u, A) (19)

where ¢(-|u, A) is the pdf in (5).




. ol
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In (19), consider the special choice of a Dirichlet process prior for G with param-
eter o= MGy, where Gy is the natural conjugate prior of (u, A) given by (17) and (18)
namely the normal-Wishart. It is important to note that nothing prevents us from
choosing an arbitrary measure Gy, as the prior of 6.

Lemma 1: Let (u, A) have a joint normal-Wishart prior given by (17) and (18). Then
the prior guess of the prediction density at x, fy(x), is given by (see equation (14))

b ~(k+v*—k*+1)2
folo)a |l + Py (¢ —u*) A% — u*) (20)

a k-variate MVt density with mean vector u*, precision matrix ¢g = (v* —k + 1)A*b*/
(b* +1),and vy = (v* —k + 1) degrees of freedom.

The proof of Lemma 1 is given in the Appendix.

Using Theorem 1 and Lemma 1, we are now able to provide the Bayes prediction
density of a future observation X,, 4, given x, ..., x,.

Theorem 2: Given f(x) = [ ¢(x|u, A)dG(u, A), with G € D(w), and a = MGy, where G,
is the normal-Wishart prior specified in (17) and (18), the Bayes prediction density of
l Xpeq givenxy, ..., x, is

M n h
fn@) =y fe) + o= falx), @1
where fq(x) is the MVt density given in (20) and

. 1 n
) fn(X)=;i§1 S S o, AdH((ug, Ay, ooy (s Alxg s oy Xp). (22)

The Bayes prediction density is therefore a weighted mixture of a multivariate-t den-
sity fo(x) and £, (x), with the weights M|(M + n) and n/(M + n), respectively. The den-
sity f,,(x) can be evaluated numerically using the results of Section 5.

) Two special cases which do not require a numerical evaluation are given next. The
following Theorem 3 for M — 0 yields the usual parametric result in which (u, A) has
the normal-Wishart prior and x, ..., x,, is a random sample from ¢(x |u, A).
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Theorem 3: Let x;lu, A ~Ng(u, Ayi=1,...,n, ulA ~Ng(u*, A*), and A ~ W (A*, v¥).
Then as M — 0, then density in (21) becomes

faGe) @ [1+[1+(x = praypre(e — i) (emevt =k, (23)
n n

where X = 2 x;/n and §= 2 (x;—x)(x; —x). 0
i=1 i=1

A proof of this theorem is included in the Appendix. Note that f2(x) in (23)is a
k-variate MVt density with mean vector u** = (b*u* + nx)/(b* + n), precision matrix
¢** = (b* +m)[nb*(b* +n) N (X —pFYF - p*) + A* TS (b* +n+1) and
n+v*—k+1 degrees of freedom. Setting =1 and X =x; in Theorem 3 gives the
Bayes prediction density of X,,,; given one observation x;(i =1, ..., n):

Corollary 1: Let x;iu, A~ Ni(u, A), ulA ~ Ni(u*, b*A) and A ~ Wi (A*, v*). Then
as M — (0, the Bayes prediction density of X,,; given x; is

fl,,-(x) ol +(x —/,,liT )’\[/J (x _IJiT )]—(k+v—k+2)/2

a k-variate multivariatet pdf with mean vector ] = (b*u* +x;)/(b* + 1) precision
matrix ¥] = (b* + D[B*(B* + 1)~ 0e; — w¥)(x; — %) + A* 1171 /(b* + 2)and v~k +2
degrees of freedom.

The second special case, as M — o, is covered by the following result which fol-
lows from Corollary 1 and (16).

Corollary 2: Let xlu, A~ Ng(u,A)i =1,...,n, u|A~ Ni(u*, b*A),and A~ W (A*, v*)
then as M — o the Bayes prediction density of X,4+; given x,, v Xy [ (%), is given
by a finite mixture of multivariate-¢ densitiesi.e.,

1 n
f:(x)a; 1 +(x,-—u})'wg(xi_’ui)]—-(k+v—k+2)/2_
i=1
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4 Bayes Estimation of a Regression Parameter

The results obtained in the previous section allow us to find the estimate of §* given in
(4), where §* minimizes the prediction mean-squared error that is specified in (3).
Although the estimate of §* using the Bayes prediction density in Theorem 2 cannot
be computed in a closed form, the general principle can be illustrated with the follow-
ing cases.

From (3) we have

pr=D"lq,

where for 1 <, j <k — 1, the typical elements of D and 4 are
dij =EXin+1 " Xjn+1)

and
a; =E(X,-,,,+1 “Yape1)

For an f which is a normal mixture, for the no-sample case, the estimate of §* can be
computed using the following. Let u* = (uf, ..., uf) and let A*~! =((ZH)), 1 <1,
I' <k, then the {, j-th element of D is

dij = (@*@* —k —1)/(b* + 1))_lsz+1,j+1 +#;k+1l-4fl3-1, I<ij<k-1
and the j-th element of a is
a; = (*@* —k - 1)/(b* + 1)_IET,,'+1 +/~1=1k#,*+1, lsj<k-1.

A similar procedure can be used to compute the estimate of §* when M — 0. Letting
A¥*71 = ((HF), 1 <1 I'< k, and u}'* denote the /-th element of u** we have

dy=@+v*—k— 1) IR g i
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and
gp=(n+v —k— 1) ZP iy, 1<<k- L

Finally, for the M — oo case, d;;’s and g;s can again be given explicitly. The details are
ommitted.

5 Remarks and Computational Aspects

The usual issues in density estimation regarding the kernel and the window-length
could be related to the choice of the prior a in our Bayes set-up, although the specifies
need further investigation. In particular, the special form (16) corresponds to a variable
kernel estimate, as Ferguson notes. Computation of (13), the Bayes estimator of the
density can be done along the lines of Ferguson (1983), which contains an illustration
for density on R!. If we define

H(xl, ...,x,,)=f...f[ ﬁ h(x,l@,)l ﬁ d(MGO +ihl 861)(01)/M(n)
i=1 i=1 =1

i=
then Lo (1978) provides the following representation of the function f/

i—1

[ h(xilei)] f d(MGo+ Tl 69.)(00
i=1 i=1 j=1 !

i

S

dH(els---:enixl"“’x")= M(n)'h(xl X )
s X

Using this, one can rewrite the expression for Y, (x)in (13)in terms of the function
h(-) as

B0 26 wvey Xg)

Yn,alx)=—p— — 24)

B jooecs Bgi)

The computation of ¥, o(x) clearly depends on the evaluation of the ratio in equation
24).
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If we expand the product measure which appears in equation (24), there are n!

terms and each term of the expansion determines a partition Q = {Ky, ..., K,, } of the
data set {xy,...,x,} with the property that 8; = 6; if and only if x; €K, x; €K, for
some set K in Q. Hence, we can write h(x, ..., x,) as
h(xls“'axn):g PM(Q)Z(Q)$ (25)
where
Z@)= 11 f 11 h(x;10)dGo(0) (26)
KeQ xEK

and P(Q) is the probability of selecting a particular partition, Q. Define

FhGx16) T h(xi]6)dGo (6)
v@=22 5 g—_x
n KkeQ J 1L h(x;10)dGo(6)

xj€EK

@7

where [K|is the cardinality of the set K. For the specific choice of G that we use in
(17) and (18), we can simplify the expression for Z(Q) and Y(Q) given in (26) and
(27), respectively.

Given x4, ..., x, the Monte Carlo procedure entails the following steps:

(i) Select a partition: This is done by using Kuo (1986)’s method. Start the first set
of partitions with x;, say. Then, for i=1,2,...,n—1, x;4; starts a new set with

B
probability ; otherwise it is placed in an existing set with probability (M_+) ,
i

M+i
where r is the number of elements already in that set. In the computations, we need
only to record the number of the sets in a partition, and the indices in each class, and
for this partitioning process, one may use the indices 1 through # and not the data
themselves.

(i) Estimating Yy o: Once a particular partition Q; is randomly chosen, compute
Z(Qy) and Y(Q;) using the equations (26) and (27). This process is replicated N times
to give Z(Q;) and Y(Q;), 1 <i<N, and the Monte Carlo estimate of @,,(x)in (13)is
given by

-~
~

N N
n(x)=i§1 Y(er)/iz:1 Z(Qy).
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The estimate of V,, ,(x) is then computed using (13). The variance of this estimator
can be computed using the asymptotic formula for the variance of the ratio of means

(see, Cochran 1977, p. 155):

Y, 178 | u w2
Var( )=Var(7)= [02—20 222
% Z) N7 T T

where the estimates

= N = N
2Q)=he = T ZQIN. ¥@=i= Z Y@V,

N -
6 =W - DI (200 -2,

N —_
6y =N -1 2 (V@) - Y@,

and
Gyz =[NV = D]7HZ Z(Q1) Y(Q)) — NZ(Q) - Y(Q)]

are used in place of the corresponding parameters.

Appendix

Proof of Lemma 1: By using the definition in (14), we have that
fo®) = [ olxlu, A)dGo(p, A)

*

b*+1

a [N RI2e=12 Al (x = u*)(x — u*) + AL dA

+ A*—l |(u"+1)/2

a [Oc = p*)oe = u*)

b*+1
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On using the normalizing constant of the Wishart distribution. Now using the result
that if V' is a nonsingular (p x p) matrix, a and b €RP (cf. Press 1982, p. 20), then

[V +ab'|=|VI[1+b'V"1a],
we get that

* —-(v*+1)/2
g & YA )

o) all+

This completes the proof. 0

Proof of Theorem 3: Notice that f,?(x) is the expectation of ¢(x|u, A) w.r.t. the
posterior density of (u, A) given x, ..., x,,. This posterior density is well known (e.g.,
see Press 1982, p. 187) and is given by

dGO((/‘La A)|XI, '-')xn)adGO(IJ’ A) 'f(xla ---;xni/vl, A)

1172 1 '
o | A% exp _E(M_.U*)/\b*(u_ﬂ* X

exp

1 . 1
—=(u=X)nA(u=3) - [A[FPEE D12 oxp L~ tr A[S + A*1
2 P72

from which we get that
plxy. oo xn, A~ Np(u**, (AD* + nA)), (A1)
and

Alxy, oo, A~ We((S + A* 71+ nb*(b* + n) ™1 (F —w*)(E —u*) )L, n + %),
(A2)
Using (A.1) and (A.2) it follows that

Xt 1115 o0 Xy A~ Ne(u**, A(D* + n)/(b* +n + 1)), (A3)
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Let the pdf of in (A.3) be denoted by f2(-|xy, ..., X, A). Then, from (A.2) and (A.3)
the Bayes prediction density of x4 is

)= [1aCelxq, o xp, A) - W(dAlxy, Xq, .. x,)

1
a [ A2 exp —otr Al +n)(b* +n + 1) 1(x —u**)(x—,u**)')
A

. 1
C A k=12 exp (——2— tr ALS + A*~1 +nb*(b* + n) 7 (X — u*)(x —u*)'])dA

from which the result follows. [
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